Hanatoxin Modifies the Gating of a Voltage-Dependent K+ Channel through Multiple Binding Sites

نویسندگان

  • Kenton J. Swartz
  • Roderick MacKinnon
چکیده

We studied the mechanism by which Hanatoxin (HaTx) inhibits the drk1 voltage-gated K+ channel. HaTx inhibits the K+ channel by shifting channel opening to more depolarized voltages. Channels opened by strong depolarization in the presence of HaTx deactivate much faster upon repolarization, indicating that toxin bound channels can open. Thus, HaTx inhibits the drk1 K+ channel, not by physically occluding the ion conduction pore, but by modifying channel gating. Occupancy of the channel by HaTx was studied using various strength depolarizations. The concentration dependence for equilibrium occupancy as well as the kinetics of onset and recovery from inhibition indicate that multiple HaTx molecules can simultaneously bind to a single K+ channel. These results are consistent with a simple model in which HaTx binds to the surface of the drk1 K+ channel at four equivalent sites and alters the energetics of channel gating.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping the Receptor Site for Hanatoxin, a Gating Modifier of Voltage-Dependent K+ Channels

Hanatoxin (HaTx) binds to multiple sites on the surface of the drk1 voltage-gated K+ channel and modifies channel gating. We set out to identify channel residues that contribute to form these HaTx binding sites. Chimeras constructed using the drk1 and shaker K+ channels suggest that the S3-S4 linker may contain influential residues. Alanine scanning mutagenesis of the region extending from the ...

متن کامل

Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels.

Protein toxins from venomous animals exhibit remarkably specific and selective interactions with a wide variety of ion channels. Hanatoxin and grammotoxin are two related protein toxins found in the venom of the Chilean Rose Tarantula, Phrixotrichus spatulata. Hanatoxin inhibits voltage-gated K+ channels and grammotoxin inhibits voltage-gated Ca2+ channels. Both toxins inhibit their respective ...

متن کامل

External Barium Affects the Gating of KCNQ1 Potassium Channels and Produces a Pore Block via Two Discrete Sites

The pore properties and the reciprocal interactions between permeant ions and the gating of KCNQ channels are poorly understood. Here we used external barium to investigate the permeation characteristics of homomeric KCNQ1 channels. We assessed the Ba(2+) binding kinetics and the concentration and voltage dependence of Ba(2+) steady-state block. Our results indicate that extracellular Ba(2+) ex...

متن کامل

APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel.

We studied the mechanism of action and the binding site of APETx1, a peptide toxin purified from sea anemone, on the human ether-a-go-go-related gene (hERG) channel. Similar to the effects of gating modifier toxins (hanatoxin and SGTx) on the voltage-gated potassium (Kv) 2.1 channel, APETx1 shifts the voltage-dependence of hERG activation in the positive direction and suppresses its current amp...

متن کامل

Opening the Shaker K+ channel with hanatoxin

Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms commonly target the S1-S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 18  شماره 

صفحات  -

تاریخ انتشار 1997